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An attempt is made to modify the superstring action in order to incorporate 
exceptional groups as internal symmetry groups. This is achieved by allowing 
the string variables to take on values in the exceptional Jordan algebra. This 
results in an exceptional quantum mechanical space which provides the string 
with an exceptional symmetry group in a fundamentally different way from the 
prescription of Chan and Paton. 

1. I N T R O D U C T I O N  

Green  and  Schwarz  (1984) have s ingled  out  SO(32)  and  E ~ x E ~  as 
gauge  g roups  which admi t  an anomaly - f ree  str ing theory.  However ,  as is 
well  known,  the  excep t iona l  g roups  have been  exc luded  f rom type  1 super-  
strings. Let us briefly recal l  why this is so. The  in terna l  g roup  is i n t roduc e d  
by  assoc ia t ing  " q u a r k "  charges  with the ends  o f  the str ing ~ la Chan  and  
Pa ton  (1969). One associa tes  g roup  genera tors  Ai with the i th ex terna l  str ing 
state and  in t roduces  the g roup  factor  

tr(A,,A,2""" Ai,,,) (1) 

into the supers t r ing  ampl i tudes .  Cons i s tency  with the fac tor iza t ion  p r o p e r t y  
o f  string ampl i t udes  (Schwarz ,  1982) then dic ta tes  that  

A ~ A1A2 - - - Am-A,~Am-1 " " ' AI (2) 

closes for  all m. Marcus  and  Sagnot t i  (1982) have shown that  equa t ion  (2) 
does  not  c lose for excep t iona l  groups.  

In this paper ,  we invest igate  an a l ternat ive  a p p r o a c h  to the inco rpor -  
a t ion  of  in ternal  symmetry .  Ul t imate ly ,  a theory  is sought  whereby  the 
excep t iona l  g roup  can a p p e a r  as an in ternal  symmet ry  o f  the theory.  We 
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Table i 

R SO(3) SU(3) Sp(6) F 4 

C SU(3) SU(3) x SU(3) SU(6) E 6 

H Sp(6) SU(6) S0(12)  E 7 

O F 4 E 6 E 7 E 8 

propose to utilize the result that the exceptional groups arise as automorph- 
ism groups of exceptional algebras, and that these algebras define a quantum 
theory. Our idea is to modify the first quantized superstring by allowing 
the string variables to take on values in the exceptional Jordan algebra 
(Jordan, 1933; Jordan etal., 1934; Segal, 1947; Sherman, 1956). In a previous 
paper (Foot and Joshi, 1987a) we attempted to incorporate the exceptional 
Jordan algebra into the bosonic string. In that note we were exploring a 
possible connection between the space-time dimension d = 26 and the 
dimensionality of the exceptional Jordan algebra s ~ .  Here our motivations 
are slightly different. 

The reason for this inclusion of exceptional Jordan algebras in the 
superstring is because the exceptional groups are related to the Jordan 
algebras. The situation here is summarized nicely by the Freudenthal-Tits 
magic square (Table I). The Lie algebras in the square are given by 

L = Der A + Ao x 3"o + Der(J)  (3) 

where Der A and Der J are the derivation algebras of the division algebra 
A and the Jordan algebra J, i.e., they are the Lie algebras associated with 
the automorphism group of the algebras A and 3". Here Ao and Jo are the 
imaginary and traceless elements of the division algebra A and J, respec- 
tively. 

In Section 2 we briefly review the Jordan formulation of quantum 
mechanics. In Section 3 we modify the superstring action by allowing the 
string variables to take values in the exceptional Jordan algebra ~ s .  As a 
consequence the string states include a Jordan matrix which transforms 
under the group /=4. We have in effect attached the finite-dimensional 
exceptional quantum mechanical space to the space of string states. Finally, 
in Section 4 we discuss our results and make some concluding remarks. 

2. JORDAN FORMULATION OF QUANTUM MECHANICS 

Gfirsey (1975) has led the revival of interest in Jordan algebras, which 
has been followed by several authors (Truini and Biedenharn, 1981; Nambu, 
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1973). Jordan algebra can be defined axiomatically by the rule 

A x B = B x A  

and the property 

(4) 

octonionic matrices 

M =  ~ /3 

b 

where a, fl and 3' are real and a, b, and c are arbitrary octonions. 
In the Jordan formulation of quantum mechanics, states are represented 

by Hermitian projection operators 

P~+ = P~ (9) 

In the special Jordan algebra one makes the association 

P,~ - I '~)(~1 (10)  

and thus an explicit connection with the usual bra-ket Hilbert space is 
make. However, due to the nonassociativity of the octonions, this connection 
cannot be made for the exceptional Jordan matrices. 

The transition probability is defined by 

T~ =Tr  P~ o p~ (11) 

Note that the (unobservable) probability amplitude cannot be expressed in 
the Jordan formalism. Also note that all products are Jordan products; thus, 
the Jordan algebra is manifestly commutative. In fact, using special Jordan 
algebra, the noncommutative but associative algebra of quantum mechanics 
can equivalently be replaced by the commutative but nonassociative Jordan 
algebra. 

(8) 

(A, B, A 2) = 0 (5) 

where the associator ( . , . ,  �9 ) is defined by 

(A,B, C ) = ( A •  C - A x ( B x  C) (6) 

Every Jordan algebra (with one important exception) is equivalent to 
an algebra ~))~, containing real matrices with the (Jordan) product 

X o Y--  1 /2 (XY+ YX)  (7) 

where X Y  denotes ordinary matrix multiplication between X and Y. This 
algebra is called a special Jordan algebra. The one exception is the excep- 
tional Jordan algebra sjj~, the elements of which are the 3 x 3 Hermitian 
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The transformation law for P~ is given by 

P,~=P,~+l / l ! (h~,P,~ ,h2)+l /2! (h~, (h l ,P ,~ ,h2) ,h2)+. . .  (12) 

For the algebra ~)~3 8, 1~ are the 3 x 3 Hermitian octonionic matrices; hi and 
h: are traceless Jordan matrices. The group of such transformations 
(automorphisms) is F4. 

Let us now consider the scattering formalism. If the initial state is Pin, 
and after scattering is Pout, then in ordinary quantum mechanics they are 
related by 

Pout = SPinS -1 (13) 

The scattering matrix S defines an automorphism of the algebra. Hence in 
the exceptional case we have 

Po,~t=Pi,~+l/l!(h~,P~n,h2)+l/2!(hl,(hl,P~n, h2),h2)+ "'" (14) 

Therefore the transition probability is given by 

Ta : Tr Pc ~ Pout 

=Trpfopi ,~+TrPfo(h~,Pin,  h 2 ) + . . .  (15) 

The exceptional Jordan quantum mechanics is inequivalent to the usual 
quantum mechanics. Indeed, this exceptional quantum mechanics cannot 
be interpreted within the usual framework of quantum mechanics. For 
instance, one cannot define a Hilbert space. We now utilize the exceptional 
Jordan quantum mechanics to construct a new string action which can 
accommodate the automorphism group F4 as a symmetry group of the 
spectrum of states of the string. 

3. EXCEPTIONAL SUPERSTRING 

The conventional action for the superstring in light-cone gauge is 

S = I do'd~'- 1/47ra' O~X i O'~Xi+ i/4rrST- p �9 c~S (16) 

Throughout this section we follow the notation of Schwarz (1982). To 
incorporate the ~)~38 matrix structure, we simply introduce the direct product 

Xi=Xi |  S=S| (17) 

where ~ is the identity element of the exceptional Jordan algebra ~)3~ (it can 
be represented by a 3 x 3 unit matrix). 

The product of two elements in our direct product space is defined by 

A . B = ( A B ) Q ( J ' o  J) (18) 
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where A = A |  B= B |  and J, J '~  sJJ~3s, i.e., we have normal multiplica- 
tion between A and B and Jordan multiplication between the ~)5~ part. 

We now consider the following string action: 

S ' =  j dcr dr - 1/4~ra' O~X ~ O~X i - i / 4 r  OS 

~ S ' = S |  (19) 

Note that the S' is invariant under the automorphism group F4, as it is 
clear that the automorphism group must preserve the identity [i.e., 69 = 0, 
as can easily be checked using equation (12)]. 

The modification of the string action S by allowing the string variables 
to take on values in ~ 3  s leads to a new theory. The new action S' has all 
the invariances of S plus the F4 group invariance. Because of the simplicity 
of this modification of the string action, the subsequent analysis of S' is 
straightforward. In fact, the reader may wonder whether we have done 
anything at all! We shall see we have. 

The equations of motion are 

(02-02,)X ' =0  

(0= + 0,)S TM = 0 (20) 

(o~  - o ~ ) S  2a = 0 

If we restrict our attention to open strings, then the appropriate boundary 
conditions are 

i X i a~xl~=o=a~ I.=~=o 
s'~ r)= s2~ r) (21) 
S~~ ", ~')= S2~(~r, r) 

The solution of equations (20) with boundary conditions (21) is 
i - -  in~- X~(~, r ) = X ~ + p ~ r + i  ~ 1/n  ~,, cos ncre 

n~O 

s l a ( o  -, T ) =  ~ S a e - i ' ( ~ - ' * )  ( 2 2 )  
t/~-co 

co 
S2~(cr, r ) =  Z S,~ e -i'{~+'~) 

n=--r 

and canonical quantization gives 

[X ~, W] = irl~*| ~ 

[oL / , ~x~] = m 6 m + . , o 6 ~ / |  ~ 
(23) 

i a [ ~ , s . ] = o  
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The (mass)  2 opera to r  is 

a ' ( m a s s )  2 N =  ~ i i = or_.  �9 o z . + n ~ 2  S _ . .  y - S .  
n = l  

co 

i ~ . | 1 7 4  (24) = ~' hog 
n = l  

This seems all very trivial; however ,  the states o f  this string are not. The 
point  is, that  by enlarging the string variables  by incorpora t ing  the tensor  
p roduc t  with the except ional  quan tum mechanica l  space we can satisfy the 
usual  requirements ,  i.e., Lorentz  algebra,  Virasoro algebra,  etc. However ,  
the states of  the string can be nontrivial  and we can associate a 3 • 3 Jo rdan  
matr ix  with the states o f  the string. The general  state is of  the form 

[a) (a[ |  (25) 

where  la) is the usual Fock space,  i.e., the space on which the opera tors  
i a ,  act. And  H is any e lement  of  s2I~] satisfying 

II  2 = II  and Tr 11 = 1 (26) 

These matr ices  may  be writ ten as 

(~ 
H =  wl (a  W 1 W2) (27) 

\w2/ 

where a is real and w~ are octonions  which satisfy the condi t ion 

a 2+ WlWl+ w2w2 = 1 (28) 

Hence  we arrive at the fol lowing mass spect rum.  The massless g round  
state is 

Bose Ii)(il| i :  1 , . . . ,  8 

Fermi  ] a ) ( a [ |  a = 1 , . . . ,  8 

where  [ a ) =  i /8 (y iSo)a l i ) .  The first excited state is 

Bose i o~_~. ( [ j ) ( j l~ ) r I .  ot'~) 

S~-~ �9 ( [b ) (b l |  �9 S~) 

Fermi o~_, . ( ta)(  a] | H . otl) 

Sa~l " ( l i ) ( i l Q n "  s g )  

etc., for higher  mass  states. 

(29) 

(30) 
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Note that the states now have an internal group structure. The states 
are in the fundamental representation of F4. Let us now investigate the 
scattering formalism. The transition probability is given by 

where 

T~ =Tr(  5 .  Pout) (31) 

Pj = [ f ) ( f l  | IIj. 

Pout = Iout)(outl Q YIo~t 

and 

Iout)(outl = SI i)<il S+ 

(32) 

(33) 
IIo.t = H~r,+ 1 / l ! ( h l ,  II~., ha)+l/2!(h , ,  (h, ,  IIin, h2), h2)+" �9 �9 

Hence 

T~ = Tr(Hf o II in+Ilf  ~ (hi, H~,, h2)+"" ")[<flSli)] 2 (34) 

The transition probability has a charge-space (i.e., internal symmetry)- 
independent part I(fl S] i)l 2 multiplied with a pure charge space part. Clearly, 
the internal symmetry is incorporated in a fundamentally different manner 
from that of Chan and Paton, or indeed, in conventional gauge theories. 
Observe that this scattering formalism is only defined at the level of a first 
quantized quantum mechanical one-particle theory; it is not clear how to 
extend it to a many-particle scattering formalism. Thus, the form of the 
transition probability for N particles has not been determined. 

4. D I S C U S S I O N  A N D  C O N C L U D I N G  R E M A R K S  

By a simple modification of the superstring action within the context 
of Jordan quantum mechanics we have established a superstring with an 
F4 internal symmetry, the states of the string belonging to the fundamental 
representation of F4. Furthermore, this symmetry group has been incorpor- 
ated in a way which is profoundly different from the procedure of Chan 
and Paton. 

There are of course several problems with this theory. First, the states 
of the string are restricted by equation (26). Not every state in the funda- 
mental representation is present in the string spectrum. Second, we have 
the wrong group (F4 instead of Es • Es). Third, if we investigate closed 
strings in this model, i.e., we replace the boundary conditions (21) with the 
closed string boundary conditions 

x'(0, ~)= x'(~-, ~) 
(35) 

sA~ ,-)= sA~ ~-) 
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then proceeding as in Section 3, we would find that the closed string states 
also have this F4 group structure. Finally, we have not considered string 
interactions. 

If we try to generalize this theory in order to include the other excep- 
tional groups, then we run into some difficulties. The problem is that the 
unit matrix ~ is no longer invariant under the action of the automorphism 
group. For example, consider the infinitesimal E 6 transformation (Gfirsey, 
1975) 

6F = (H1, F,/-/2) + i H 3 F  (36) 

where F is a complex octonionic Jordan matrix, and Hi are traceless 
Hermitian 3 x 3 matrices over real octonions. Clearly 

69 = in3  ~ 0 (37) 

An equivalent statement of the problem is that the Freudenthal algebra 
(this is the algebra which has the exceptional group E6 as the automorphism 
group) does not contain an identity element. Thus, extending this theory 
to the other exceptional groups is nontrivial. 

Finally, we note that the exceptional Jordan algebra has been related 
to the superstring in several different ways. The structure group of the 
exceptional Jordan algebra contains the Lorentz group in 10 dimensions, 
with the vector and spinor being represented as elements of the exceptional 
Jordan algebra (Foot and Joshi, 1987b). Also, the algebra of vertex operators 
may be related to the exceptional Jordan algebra (Goddard et al., 1987; 
Corrigan and Hollowood, 1988; Ferreira et al., 1988; Gfinaydin and Hyun, 
1988). Clearly, then, there are many indications that Jordan and related 
algebras may have relevance to superstring theory. 
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